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EQUILIBRIUM OF AN ELASTIC LAYER WEAKENED BY PLANE CRACKS* 

B.I. SMETANIN and B.V. SOBOL' 

The spatial problem of the elastic equilibrium of a layer in whose middle 
plane there is a system of cracks is considered. The cracks are maintained 
open under the action of a normal load applied to their edges. The layer 
faces are compressed between two rigid smooth foundations. The problem 
is reduced to solving an integral equation of the first kind. The asymptotic 
methods of "large and small J." /l/ as well as the method of successive 
approximations and a variational method are used to construct the solutions 
of this equation for elliptically and rectangularly shaped cracks in 
different ranges of variation of the geomtrical parameters. 

1. Formulation of the problem, properties of the kernel of the integral 
equation. Let a domain occupied by an elastic medium be determined by the inequalities 
IZI<i& 1"1-=z=,IYl<oo. A crack occupying a certain domain $J in planform is in the 
z = 0 plane. .Aload u,= --p (2, y), z = &O is applied to the crack edges. The following 
conditions are realized on the faces of the layer, at 'z = Ah : W= 0, ~~~ = rvz = 0, where w 

is the projection of the displacement vector on the Oa axis, and ~~~~~~~ are the stress 
tensor components. 

The problem under consideration is reduced to the solution of an integral equation of 
the first kind by the methods of integral transformation: 

v(z,y)=W(s,y,O), AL- 

R = lb - V + (Y - r1Yv Q = 2 ti: +I 

where E is Young's modulus, v is Poisson's ratio, and J, (5) is the Bessel function of 
the first kind. 

As a result of utilizing the well-known integral representations /l/, the integral 
equation (1.1) can be converted to the form 

*Prikl.Matem.Mekhan .,48,6,1030-1038,1984 
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KS (a, @) = f 5 I/ulf L (h vu” + u”) cos au cos @I du du 
0 0 

We note the following properties of the function L(U): 

(1.2) 

L (U) = i + 0 (ue*"), u +m; lim uL (u) = 2 (1.3) 
u-0 

which enables us to formulate the following assertion. 

Lemma. The function K,(a) is continuous with all its derivatives for all O<a<oo. 
For O<a<4 the function K,(u) is representable by the absolutely convergent series 

K1 (a) = $ $l lRazk 
k* 

(1.4) 

The proof of the lemma results from the properties (1.3) and the representation of the 
function J, (au) as a power series. Direct calculations enable us to obtain (<(a) is the 
Riemann zeta-function) 

lp = (-1)'(2k+2)1(k+2)5(2k+3) , 
(k!)r2"+' 

k_o 1 7 , ,-,..* 

We will now examine'methods of solving the integral equations obtained. 

2. A crack in a layer of large relative thickness. We introduce a dimensionless 
parameter characterizing the relative thickness of the layer li = hla, where 2a is the greatest 
distance between two points of the contour. The method of constructing the asymptotic solution 
of integral equations of the form (1.1) for sufficiently large values of h /2/ is described 
in detail in./3/. 

Let Q be the elliptical domain S(X, y) 2 0; ~(2, Y) = 1 - S/n4 - ya/ba; a > b. To be specific 

we set p (2, Y) = p = COM& In this case the asymptotic expansion of the solution of the 
integral equation (1.1) taking (1.4) into account can be represented in the form 

(2.1) 

CIJ’ 
4F(3) 

-7' 
k-y-l-_ E+ 

where K(k) and E(k) are the complete elliptical integrals 
respectively. 

of the drst and second kinds, 

We will now examine the problem of two symmetric cracks with respect to the axis x=0 

that lie in the plane z = 0. Let Q: S&US&. In this case, the integral equation (1.1) can 

be converted to the following form by virtue of the symmetry of the problem 

(2.2) 

K8 (a, 8) = -- (a? + fi2)-“l, K4 (a, 8) = K1 (q) 

Let the domain occupied by the cracks have elliptical shape and be described by the 
relationships 

S&: Aa2 + yalb2 < 1; B,: (x + 21)Va2 + y2/bZ .< 1 

We introduce two dimensionless geometrical parameters 

h,=hla; h,=l/a(O<h,<m; 1<h,<m) 

To avoid awkward calculations in constructing the asymptotic expansion of the solution 
in these two parameters, we introduce the notation h,= lb= .!A. The parameter t changes in 

such a manner that the parameters h, and h, remain fairly large. Furthermore, by applying 

the above-mentioned method to solve the integral equation (2.21, we obtain its solution in 
the form of the asymptotic expansion 

v(z,Y)=~~S(I~Y)~--l~+~]}+O(h-J) 

x = [(2P - 1) E (k) + (1 - k*) K (k)l k-e 

(2.3) 

ca 

g, = - -+ - g- [co + ;r;; (-+)?” cn] 
n=o 
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c, = -~Z,,/(JL~"+~) (n = 0, 1,2, . . .) 

It is convenient to use the integral representations 

m OJ 

LE 41 (3~)~" nc, = + 
s 

[L(u) - 11 uaJ1 (au) du 

w=l 0 

for calculations by means of (2.3). 
If we pass to the limit as t-cc in (2.4), then the solution (2.3) will correspond 

to the equilibrium problem for an elastic space weakened by two symmetric elliptical cracks. 
The solution of the problem of a layer with one elliptical cracks results from (2.3) 

because of the realization of a simultaneous passage to the limit as h +m and t-co. The 
relationships h, = th is here conserved within allowable limits. 

3. A crack in a layer of small relative thickness. A "degenerate" solution of 
the problem on the contact between a stamp and an elastic layer for the case of its small 
relative thickness was constructed in /1/. By analogous reasoning, we obtain 

v(GY)=-& [I--&hW+ . ..]P(GY). (x,Y,ES~ 

Relationship (3.1) yields the "internal" solution of the integral equation (1.1) for small 
relative layer thicknesses. It will be the more accurate the more deeply the point under 
consideration is removed from the contour into the interior of the domain 61 along the normal. 
The accuracy of the constructed degenerate solution is determined by estimates analogous to 

/l/. Relationship (3.1) becomes meaningless as one approaches the crack contour. 
Will now construct a solution of the boundary-layer type in the neighbourhood of the 

crack contour. Under the condition of axial symmetry of the problem such a solution has been 
constructed in /4/. An analogous solution of the three-dimensional contact problemispresented 
in /l/. Realization of similar reasoning in the case under consideration enables the following 
result to be obtained: 

v(2,Y)=+$@-Dn(r,Y)+ +-erp[--BDn(z, Y)] x F [A q-1) (3.2) 

A = 0.876; B = 1.768; D = 0.640; n (z, y) = r (z, y)/b 

(r(.q y) is the distance between the point and the crack contour). Wenotethat Y (rl Y) ID Ph&e) 
follows from (3.1) for p (z,Y) = p = const. This solution follows from (3.2) when n> 1. 

The reasoning performed and the solution constructed are valid for any simply-connected 
domain P bounded by a smooth contour. 

4. Successive approximations. A method of constructing approximate solutions of 
the integral equations of the first kind under investigation is considered. The solution of 
the equation is constructed in the formofthe product of two functions, one of which is the 
solution of the equation for one of the limit values of the kernel parameter. An integral 
equation of the second kind is obtained for the second of the functions mentioned, and its 
solution can be constructed by the method of successive approximations, say. 

Consider the integral equation of the first kind 

(4.1) 

The function K(x,& y,q) 

f CG Y) 

is the regular part of the kernel of the integral equation, 
is a fairly smooth function, and 51 is a simply-connected domain bounded by a smooth 

contour. 
We construct the solution of (4.1) in the form 

Y (27 Y) = Y* (29 Y) w (29 Y) (4.2) 

where Y* (r, Y) is the solution of the integral equation (4.1) obtained by well-known methods 
for the limit value of one of the kernel parameters. 

Substituting (4.2) into (4.1), we obtain an integral equation to determine the function 
0 (3, Y) whose solution can be obtained by the method of successive approximations, where the 
exoression 
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should be taken as 
The recursion 

1:,62 
%(SV y)= 1 -an- - fJn _5& f- O(h_5) 

then 
'L, = a, = 1, pn = p0 + 11 -x/E (WI pm, PI, = l/E (4 (4.9) 

The appropriate coefficients of the expansion of the exact solution are calculated from 

the formulas 
a* = 1, p* = l/x (4.10) 

It can be Seen that --'/, < 1 - x/E (k) < 0. This indicates that the Sequence of values- 

of Bn will converge, and its limit will be fl*. 
In particular, for kZ - 0.6 direct calculations by meanS of (4.9) and (4.10) yield 

lim fin z p* = 0.577ii 
n-u 

00 (z, Y) = AJf (5, Y) f (A Y) 

M-'(z,y)=-A ~v+(g,q)~+SS~*(E,q)K(3,E,~,‘1)dEdli s\ 
Q Q 

the zeroth approximation. 
relations 

o,(z, y)=Wz,y)(!(z, Y) + A 5s p&Et n)"n-I(& n)+i& 
Q 

~.-~(~,Y)ASS:Y+(E.~)~-SS~.(E,~~) x 

[wn-&.+kd~, v)l K (~7 ftQyt q) d&W, (5, Y) E Q 
(n = 1,2, . . .) 

(4.3) 

are used to calculate subsequent approximations. 
We construct the solution of the integral equation (4.1) by the method of Successive 

approximations in the case when the regular part of the kernel is representable by the follow- 
ing asymptotic series 

W*E*yGl)=;;if;h[g9+ &G&+O(W (4.4) 

Let the domain of interchange of the boundary conditions Q be: s(z,y)>; 0; f(z,y)= Zxp/O = 
con& (ga,g, are arbitrary numbers). 

The solution 

h + m, y* (2, y) = A 1/s (2, y) (A = bp [8E (k)]‘) 

corresponds to the limit case. 

(4.5) 

As a result of calculations using (4.3), taking (4.4) and (4.5) into account we have 

+W f&*z 
(J-d~~Y)=~--&qk)~~ -&tB 

+ o +-s) (4.6) 

and later applying the proposed algorithm, we obtain the following relationship for the 
successive evaluation of approximations of the function o (z, y) desired: 

%(rty)==~~(r.~) +~o(s,y)(l f ;$$[A~+, II)%I(&'$~-- (4.7) 
n 

S51~~~1)s,,-,(E,rl)K(t,y,E,~)fdEdrl-j} (fI=L2 ,...) 
Q 

m asymptotic expansion of the exact solution of the integral equation under investigation 
in a series of negative powers of the parameter h was constructed above. For a --> b the 

following relationship corresponds to it: 

e&a of=l----- 
ME (k) 1:’ &s + 0 (k-5) (L8) 

It is seen from a'comparison of (4.6) and (4.8) that the zeroth approximation for the 

function o(z,y) already yields exact values of terms in the expansion w, (5, y) for he3 and 

lower orders of smallness. 
Realization of the expansion (4.4) and (4.6) in (4.7) and evaluation of the corresponding 

integrals enable us to obtain recursion relations to calculate terms in I.-& and higher order. 

If the following notation is used 
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Therefore, the expansion of the solution obtained by successive approximations in the 
parameter h-l will converge entirely to the asymptotic expansion of the exact solution of the 
problem. 

The limits of applicability of the solution obtained by such means will be determined by 
the radius of convergence of the expansion (4.4). In practice, the zeroth approximation in 
the form (4.5) can be used as the approximate solution of the initial equation for 4 ,<k<rn. 
If exact sepresentations are taken for the kernels , then the domain in which the zeroth 
approximation can be taken as an approximate solution with an accuracy sufficient for practice 
is boradened substantially. 

Calculations using (4.3) in the problem being consideredhere enable us to obtain 

(4.11) 

5. A variational method. The methods examined above enable a solution of the integral 
equation under investigation to be constructed in a form that is simple in structure. In order 
to set the limits within which the solutions obtained yield sufficient accuracy for practical 
purposes, a variational method that yields guaranteed accuracy is also applied. The solution 
of the integral equation in the form (1.2) will here be sought in the case of an elliptical 
domain a in the following form: 

(5.:) 

We determine the coefficients A, by Ritz's method from.the condition for a minimum of 
the functional 

Jiv)=~~~(~,Y)~~~(%,tt)~~(%-~.~-~)~%~~~x~~- (5.2) 
Q Q 

We note that an analogous approach to the solution Of integral equations of a somewhat 
different kind is used in /5/, where power-law functions were selected as the coordinate 
functions. 

Substituting (5.1) into (5.2) and writing down the condition for a minimum of the func- 
tional J(y), we obtain a system of linear algebraic equations for determining the coefficients 
A nm 

(m = 0, 172, . . ., M; n = 0, 272, . . ., N) 

F (a, $) = sin HIP - CesXIH2, H = Jfa? f BP 

(5.3) 

Sijmn (a, 8) = IF (a - arm, 8 - na) -I- F (a - nm, fi + 
w-2) + F (a + am, B - nn) + F (a -t am, B +- nn)l IF(a- 
ni, f~ - nj) f F (a - ni, B + rcj) t F (a + xi, B - 
nj) -I- F (a -t- ni, B + nj)l V/(ae)* -i- f3” 

It is seen from (5.4) that Pilmn = P,ii. 
It is convenient to represent Pijmn in the form Pijmn a P&3, -i- P&m for calculations 

of the coefficients, where 

PTjma 

PBW corresponds to the limit case h-cW. The integrand in 
decreases exponentially for large values of the argument by virtue of the properties 

(1.3) of the function L(u). 
The variational method of solving the integral equation (1.2) can be applied in an 

analogous form even in the case when the crack occupies a rectangular domain. 
Let the domain of integration $J in the functional (5.2) be {]r{<a,Y< b). AS before, 

in the ne~ghbourhood of points of crack contour smoothness the desired solution should have 
the asymptotic form 

Y (5, Y) = ra (s2, Y) P;'l fSb.5) 

where p is the distance between the point with coordinates (x9 Y) and the contour, AS 
established in /6/, the asymptotic form of the behaviour of the function v(x,Y) near an 
angular point of the crack contour is different, and in particular, has the following form in 
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the case of a right angle: 

y (2, y) =: B (a) (P/u)o~=@ (5.6) 
where ~,a are polar Cooxdinates with pole at the angular point of the crack contour. 

As in the problem of an elliptical crack, we select a system of coordinate functions that 
explicitly take account of the asymptotic form (5.5). .We seek the solution of the problem in 
the case when p&y)= p = const in the form 

” (3. cf 

An analogous solution of the problem on the equilibrium of an elastic space weakened by 
a rectangular crack* fGol'&htefn R.V., Entov, V.M. and Zazovskii A.F. Solution of mixed 
boundary value problems by a direct variational method. Preprint No.78, Inst. Problem 
Mekhaniki hkad. Nauk SSSR, Moscow, 1976, 54p.j can be obtained from (5.7) by passing to the 
limit as h-woo. 

Like (5.3). the coefficients of the expansion are determined from the following system . 
of linear algebraic equations: 

(the meaning of all 

ii. Analysis 

M N cz: c ': Pij,Aij~2eF(nm,nn), F(ct,Ci)- .~ (3.8) 
i-6 +=a 
(m===O, 1, 2,..., M; ne0,1,2,..., N) 

tbe notation except F(a.8) is retained from (5.4)). 

and comparison of the numerical results. __ -.- 
introduce the quantity R = &lKlaa in discussing tbe results of an 
pxoblem of an elliptical crack in an elastic layer, whexe & is the 
coefficient in the problem under consideration and RI.. corresponds 
h-coo. It can be seen that 

N = Fz [Y (2, YFY, (2, Yll 

It is convenient to 
investigation of the 
normal stress intensity 
to the limit case as 

(6.1) 

Thus, we obtain for the solution of the problem by the method of '"large h" (I' is the 
contour of the domain Q) 

We obtain the value of N at the vertices of the elLiptica domain from (3.2) by solving 
the problem by the method of "small h" 

We note that 
is obtained for a 

E tk) 
N ((0, 6) = 5 

because of the passage to the limit as alb+m a corresponding 
strip crack of width 2b in a layex f4/ from (6.3) 

N=jG@8j 

The method described in Sect.4 enables the following result to be obtained 

N = a0 (G V)lr 

(6.3) 

results 

(ii.4) 

Finally, as a result of solving the problem by a variational method we can write the 
expression far the quantity being investigated in the form 

It is convenient to set r = acascp, y = b sin9 in (6.2) -_(6.5) as the point (s,y) traverses 

the crack contour, where the angle rp is measured from the positive direction of the Ox axis. 
Results of a calculation of the quantity Nby means of 16.2) -(6.5) are shown in Fig.1 

for hJa = 0.5; cp = 0 and 9, = ad2 as a function of the relative layer thickness h. 
The results obtained indicate that the solution of the problem considered here for an 

elliptical crack in an elastic layer by the method of Large h can be used with sufficient 

accuract fox practical Purposes in the range L > 1.5 (the error does not exceed 2%). The 

method described in Sect.4 turns out to be effective for h> 0.5. The solution of the 

problem by the method of small h yields sufficient accuracy only for very small relative layer 
thicknesses (h gO.5). Investigation of the problem by a variational method yields a practi- 
cally exact solution in all the cases considered {k>> 0.25), and this method is used in the 
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Fig.1 Fig.2 Fig.3 

problem mentioned only to esimate the accuracy of the asymptotic solutions obtained. 
Certain results of an investigation of the problem of the equilibrium of an elastic 

layer weakened by two symmetric elliptical cracks are displaced in the insert to Fig.1. The 
calculations are performed at the point of the crack contour P, where their mutual influence 
is most perceptible (o=r). The results are given for b= 2,1.5,1,0.5. The results of an 
investigation of the problem by the method described in Sect.4 are represented by the solid 
lines. Here the results of solving the problem by the method of large 1 are represented 
by dashes for comparison, fox the case of a fairly large relative layer thickness (L1=2,1.5). 
The calculations showed that the disagreement between the results of calculations by the 
method of large ). and by the method described above do not exceed 3% in the following ranges 
of the geometric parameters of the problem hia> 1.5, Ua>, 1.5, b/of 1.5. 

We will now analyse the numerical values of the normal stress intensity coefficient Ii1 
for traversal around the contour of a rectangular crack. In this case it turns out to be 
more convenient to examine its absolute values since there is not exact solution to this 
problem in the limit case as L -00. 

The normal stress intensity coefficients along each of the sides of the rectangle are 
evaluated from the formulas 

(6.6) 

Graphs of the change in the quantity &/&J&j along the larger side (b/a = 0.5) are 
displayed in Fig.2 for different values of h. 

We notethattheproblems considered inthepaperforthe conditions onmentionedthe layer faces 
correspond physically also to the equilibrium of an elastic space.weakened by a chain of 
cracks. The cracks are in parallel planes at a distance of 2b. 

The solution J~(z,I/) in the neighbourhood of angular points of the crack was constructed 
as follows. Along rays emerging from the angular point at a different angle CL values of the 
ratio D (cr) = v fz. ~)/(~/u)".~* were calculated. Direct calculations enable us to find that there 
is an interval of variation in r/a in whichthementioned ratio remains constant along each 
ray (the deviationsdonot exceed 4%) and varies only when passing from one ray to another. 
This regularity was found earlier for the limit case of the problem being considered here, 
corresponding to h-m (See the footnote on p. 762). The location and size of this zone 
specify the relative thickness of the layer h and other geometric parameters. Therefore, by 
determining the quantity B(a) for-each value of o it turns out to be possible to construct 
the solution v(z,y) directly to the apex of the crack angle by the asymptotic formula (5.6). 

Graphs of the function B(u) are presented in Fig.3 for different relative layer thickness 
for b/n = 0.5. Note that although the domain occupied by the crack is not symmetric relative 
to the angle bisector, this symmetry is observed for the.function y&u) in the neighbourhood 
of the angular point of the contour. 
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A CLASS OF MOTIONS OF A TOP IN THE GO~YACHEV-CHAPLYGIN CASE* 

A.I. DCKSHHVICH 

A solution of the Euler-Poisson equations is studied for the Goryachev- 
Chaplygin case /l/ under the condition when the ultraelliptic integrals 
degenerate to elliptic /2/. A solution is constructed for a class of 
motions in which both quantities , u and v, brought in by Chaplygin, vary 
with time, but one of them tends asymptoticalLy to a constant when the 
time increases without limit. The dependence of the Euler-Poisson 
variables on time is expressed in terms of elliptic functions and an 
elliptic integral of the third kind. Fairly simple approximate formulas 
are given for determining all six variables sought. 

1. Equations of motion. We will use the Goryachev-Chaplygin conditions and take 
the Euler-Poisson equations in traditional form /l/ (a dot denotes differentiation with 
respect to time) 

4p' = 3qr, 4q' = -3tp - av=, r' = ay' (1.i) 
‘f‘ =5 '7' - Qy"* y" =a py" - p$', y" = qy - py' 

If the area conetant is zero, the above system admits of four algebraic integrals 

4(p~+$)++=--2ay=k,y=+~ fy"P=l (f.2) 
4(py+ qy') -?- ry" =il 0. r&J*+ 42) i- WY" = g 

We introduce two auxiliary variables I,U so that 

L-f- v = r. Y" = -4 (p* f q? ff.3 
The following differential equations describe how these quantities vary With time? 

2(u-zJ)u‘= VW(u), 2(v-U)U'== I/F(y) (W 

F M = ft (4 fn (4 
fl (Irf = -4 + (k + 24 u -I- 4cr, fi (a) i= uJ i (24 - k) u - & 

System (1.4) can be written in terms of total. differentials thus 

‘tudu+ __=dt Zvddu 

m 1/F@) 
(1.5) 

Let us write (k-20)*-i- 2?.4g* = 0, or in parametric form (b is an auxiliary constant) 

k - 2~ = 36', 2g = --b* 0.Q 

Then jr fu) = fu - b)'(n -I- 2b), &id = -(u - zr) (p - na) (= -aRII) where all three roots CL*. 0-9 % are 

real and ox <c+<O<aS, --2b<a,. It follows that the polynomial F(u) has a multiple root 

F (U) = (11 - @'R(U). R(u)=(u+2b)f,(u) (1.7) 

Let us describe the type of set in which the variables P,V vary. We shall assume that 

g.s:O. since when g-0 the solution is known /3, 4/. Then p*+f+O and hence by virtue of 

(1.3), ttv=+o. We can assume without loss of generality that u>O,u<O.b<O. Bearing this in 

mind, we obtain O<--2&crtr~zr, (i.8) 

Thu& the quantity u varies on the interval (1.8). The set of variations is more com- 

plicated for the second variable V. Depending on the initial data, three versions are 
possible 1) CC, < U< b < 0, 2) b < ~<:a?, 3) v = 6 = con&. The last version is relatively simple and 

*~rikl.~a~em.~ekhan..48,6,1O3Ff-1042,1984 


